Fluid Mechanics

The field of fluid mechanics, as it relates to preparation for the Ph.D. degree in Mechanical Engineering or Aerospace Engineering, is concerned with the study of all aspects of fluid motion relevant to the areas of mechanical and aerospace engineering.

Summary of Major Field Body of Knowledge:

Students should master the major field body of knowledge covered in the following courses:

MAE 103, 150A, 150B, 250A, 250B, 250C

and a selection of 3 courses from:

The qualifying (preliminary) examination covers the following subset of the major field body of knowledge:

MAE 103, 150A, 150B, 250A, 250B, 250C.

More details concerning the major field body of knowledge can be found in the **Syllabus for the Major Field**, on the next page.

Minimum Requirements for Ph.D. Major Field Students:

The student must pass a qualifying examination in the major field and satisfy other program requirements for the Ph.D. in the MAE Department besides completing all other formal University requirements.

Format of Qualifying Examination:

The exam consists of a 4-hour written exam and an oral exam administered by a panel of two or more faculty.

Timing of Qualifying Examination:

Offered every spring

Link to old exams:

http://stdntsvcs.mae.ucla.edu/exam/index.htm

Ph.D. Minor Field Requirements:

Ph.D. minor field requirements in fluid mechanics may be satisfied by completion of MAE 250A and two other courses chosen from the list given below. The student should obtain grades of B or better, with at least one A. Two of the courses must be graduate courses. The courses should not form part of any other major field requirement.

Note that MAE 150A is not included as part of the PhD minor field in Fluid Mechanics.

The student should consult with a major field advisor or with one of the members of the Fluid Mechanics Field Committee concerning suitability of the courses taken. The student should be able to defend the choice on the basis of learning experience and not on the basis of convenience.

As prerequisite to the minor field, the student should be familiar with the material covered in MAE 103 (Elementary Fluid Mechanics) and MAE 150A (Intermediate Fluid Mechanics); please see course outlines for details.
Syllabus for the Major Field in Fluid Mechanics

I. Written and Oral Examinations
All Ph.D. major field students should be familiar with important basic concepts, methods, and applications related to the following material and should be ready to apply their knowledge to traditional as well as novel and interrelated physical situations.

A. Foundations
1. Physical properties of fluids [1-3] [103,150AB,250A,250C]
2. Kinematics of fluid motion and the constitutive equations [2-4] [103, 150A,250A]
3. Integral (global) form of conservation equations (mass, momentum, energy) and applications [1] [103, 150AB]
4. Differential form of conservation equations (continuity, Navier-Stokes equations, energy equation) [2-4,5,6] [150A,250A,250C]
5. Dimensionless parameters, dimensional analysis, and dynamic similitude [1] [103, 150A,250A]
6. Concept of vorticity, circulation [2-4] [150A,250A]
7. Vorticity dynamics, Kelvin’s theorem, Helmholtz vorticity theorems, flows with concentrated and distributed vorticity [3] [250A]
8. Steady and unsteady Bernoulli equation [2,3] [150AB,250A]
9. Irrotational flow of an incompressible fluid:
 i. Two and three-dimensional potential flow theory, superposition of solutions, complex potential, Blasius theorems, conformal transformations [1-3] [150AB,250A]
 ii. Calculation of forces on bodies, Kutta-Joukowski theorem of lift, elements of airfoil and wing theory (Kutta condition, pressure drag, induced drag), concept of virtual mass [1-3,7] [150AB,250A]

B. Flow of incompressible viscous fluids
1. Exact solutions of the Navier-Stokes equations, e.g. plane and circular Couette and Poiseuille flows, impulsive and oscillatory motion of an infinite flat plate, stagnation point flow, flow due to a rotating disk [2,3,8] [150A,250AB]
2. Viscous flows with low inertia: 2D lubrication theory and journal bearings, Stokes flow about a sphere, Oseen approximation, Hele-Shaw flow [3,8] [150A,250B]
3. Laminar boundary layer theory: Prandtl approximation, Blasius flat plate solution, Falkner-Skan similarity solutions, momentum integral techniques, separation [3,8] [150A,250B]
4. Flow instability: Kelvin-Helmholtz instability, boundary layer instability (Orr-Sommerfeld equation), transition to turbulence [2-3,8] [250B]
5. Basic aspects of turbulent flows: concept of Reynolds stress, mean flow equations, Prandtl mixing length theory, turbulent boundary layers, drag and resistance laws, law of the wall, law of the wake, turbulent jets, wakes, and shear layers [2,4,8,9] [150A,250B]

C. Compressible flow
1. Steady, one-dimensional gas dynamics: isentropic flow, flow with heat addition or friction, normal shock waves [1,6,10] [103, 150AB,250C]
2. Unsteady, 1D gas dynamics: characteristic equations and the method of characteristics, weak shocks [5,6] [250C]
3. Steady, two-dimensional gas dynamics: oblique shocks, supersonic expansion and isentropic compression (Prandtl-Meyer function), shock-expansion theory, linearized potential flow: thin airfoil theory, 2D method of characteristics [5,6,10] [150B,250C]
II. Course Preparation

As preparation for the written examinations, it is recommended that the major field student in fluid mechanics take the MAE 250ABC courses. The student should also be familiar with the material covered in the prerequisites to these courses (MAE 103, 150A, 150B, 82, and 182B).

In addition to passage of both parts of the major field examination, the Ph.D. student in fluid mechanics is expected to take three advanced, specialized courses in the field. The student should obtain a grade point average of at least 3.33 in these courses. These courses should reflect an interest in a coherent group of subjects within fluid mechanics (which may be directly related to the student's intended area of Ph.D. research). These three courses should be chosen by the student in consultation with his or her advisor or a member of the Fluid Mechanics major field committee, and normally should be completed within the first two years of the student's graduate education. Possible courses include: MAE 250D, 250E, 250F, C250G, 250H, 250M, 252A, 252B, 252C, 252P, 259A.

References:

The following books have been referred to in the description of the syllabus. Other books, recommended by a faculty member, might also be consulted. The latest editions of the following texts are the most relevant.