Heat and Mass Transfer

The field of Heat and Mass Transfer, as it relates to preparation for the Ph.D. degree in Mechanical Engineering or Aerospace Engineering, concerns all aspects of heat and mass transfer relevant to mechanical, nuclear, and aerospace engineering.

Summary of Major Field Body of Knowledge:
Students should master the major field body of knowledge covered in the following courses:
MAE 131A, C132A/232A, 231A, 231B
as well as 3 additional courses pertinent to the field. Possible courses include:
MAE 231C, 231G, 285, 286, 296B, 252C, 250F (at least one of 231C or 231G must be taken)

The written qualifying (preliminary) examination covers the following subset of the major field body of knowledge:
MAE 131A, C132A/232A, 231A, 231B
and a selection of 1 course from:
MAE 231C, 231G.

More details concerning the body of knowledge can be found in the Syllabus for the Major Field, on the next page.

Minimum Requirements for Ph.D. Major Field Students:
The student must pass a written examination in the major field and satisfy other program requirements for the Ph.D. in the MAE Department besides completing all other formal University requirements.

Format of Written Qualifying Examination:
The exam consists of a 4-hour closed book part, emphasizing fundamentals, and a 4-hour open book part, where students will be required to display proficiency in selected advanced topics.

Timing of Written Qualifying Examination:
Offered when three or more students are ready to take it or at a minimum once a year.

Link to old exams:
http://stdntsvcs.mae.ucla.edu/exam/index.htm

Ph.D. Minor Field Requirements:
The minor field requirement can be satisfied by completing MAE 131A (or equivalent) and three other courses selected from MAE 231A, 231B, 231C, 231G, and C132A/232A. The average grade for these courses must be 3.33 or better, and no grade shall be less than B-.
Syllabus for the Major Field in Heat and Mass Transfer

A. Required Fundamentals
 1. Transport Properties [MAE 131A, 132A]
 Properties of Gases
 Properties of Liquids
 Properties of Metals and Nonmetals
 Properties of Porous Solids
 2. Heat Conduction in Stationary Media [MAE 131A]
 One-dimensional steady conduction
 Extended surfaces
 Multidimensional steady conduction
 Transient conduction
 3. The Conservation Equations [MAE 231A, C232A]
 Mass
 Momentum
 Energy
 Chemical species
 4. Heat Convection [MAE 131A, 231A]
 Similitude
 Fully developed laminar flow in ducts
 Laminar boundary layer on a flat plate
 Natural convection
 5. Radiative Heat Transfer [MAE 131A, 231B]
 Physics of Radiation
 Diffuse wall enclosures
 Radiation shields
 Solar radiation
 6. Boiling and Condensation [MAE 131A and/or 231C]
 The pool boiling curve
 Nucleate and film boiling
 The peak and minimum heat fluxes
 Laminar film condensation
 7. Mass Transfer [MAE C132A]
 Definitions of concentrations and fluxes
 Interfacial conditions
 Steady diffusion across a plane wall
 Transient diffusion
 Heterogeneous catalysis
 The analogy between convective heat and mass transfer
 Simultaneous convective heat and mass transfer
 Adiabatic vaporization, wet-bulb temperature
 8. Exchanger Design [MAE 131A, C132A]
 Exchanger balances
Overall heat transfer coefficients
LMTD and ε-NTU methods
Single and two stream heat exchangers
Single stream mass exchangers - catalytic converters and evaporative coolers

B. Advanced topics
Students should prepare themselves for Topics 1-3, and at least one of Topics 4 and 5.

1. Heat Convection [MAE 231A]
 Duct entrance regions
 Laminar boundary layers with pressure gradients
 Turbulent flow in ducts
 Turbulent boundary layers
 Laminar and turbulent natural convection boundary layers
 Variable wall temperature and heat flux
 High speed flow and recovery factors

2. Radiative Heat Transfer [MAE 231B]
 Directional and spectral variation of surface properties
 The equation of radiative transfer
 Radiative heat transfer in participating media
 Engineering calculation of radiation heat transfer in combustion gases
 Coupling radiative transfer with fluid flow and heat conduction

 Diffusion in porous media
 Transport in multicomponent gas mixtures
 Laminar and turbulent boundary layers with mass transfer
 Condensation from vapor-gas mixtures
 Transpiration and sweat cooling

4. Boiling and Two Phase Flow [MAE 231C]
 Nucleate boiling and bubble dynamics
 Maximum and minimum pool boiling heat fluxes
 Pool film boiling
 Forced flow evaporation and boiling
 Film condensation
 Two phase flow regimes
 Two phase flow models

5. Microscopic Energy Transport [MAE 231G]
 Statistical thermodynamics fundamentals
 Energy carriers
 Kinetic and transport theory
 Surface and Interface Effects
 Applications to semiconductor and MEMS devices

C. Course Preparation
As preparation for the written examinations, the student should have taken MAE 131A (or an equivalent course), MAE C132A/232A, 231A, 231B, and 231C or 231G. The student is expected
to have an adequate mathematics preparation for graduate work in the field. Recommended courses include MAE 182A, 182B, and 182C.

In addition to passing the written examination, it is recommended that the student take two advanced specialized courses pertinent to the field. Possible courses include MAE 231C or 231G (whichever one the student was not examined on), 285, 286, 296B, 252C, 250F.

References:

The following books are used as texts or reference works in the courses of the major field.
