Select Page

Courses

Graduate Courses in Heat and Mass Transfer

Please see the registrar’s office to know when these courses are offered.

231A. Convective Heat Transfer Theory. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 182B. Recommended: course 250A. Conservation equations for flow of real fluids. Analysis of heat transfer in laminar and turbulent, incompressible and compressible flows. Internal and external flows; free convection. Variable wall temperature; effects of variable fluid properties. Analogies among convective transfer processes. Letter grading.

231B. Radiation Heat Transfer. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 105D. Radiative properties of materials and radiative energy transfer. Emphasis on fundamental concepts, including energy levels and electromagnetic waves as well as analytical methods for calculating radiative properties and radiation transfer in absorbing, emitting, and scattering media. Applications cover laser-material interactions in addition to traditional areas such as combustion and thermal insulation. Letter grading.

231C. Phase Change Heat Transfer and Two-Phase Flow. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 131A, 150A. Two-phase flow, boiling, and condensation. Generalized constitutive equations for two-phase flow. Phenomenological theories of boiling and condensation, including forced flow effects. Letter grading.

231G. Microscopic Energy Transport. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 105D. Heat carriers (photons, electronics, phonons, molecules) and their energy characteristics, statistical properties of heat carriers, scattering and propagation of heat carriers, Boltzmann transport equations, derivation of classical laws from Boltzmann transport equations, deviation from classical laws at small scale. Letter grading.

C232A. Mass Transfer. (4)
Lecture, four hours; outside study, eight hours. Requisites: courses 105D, 131A. Principles of mass transfer by diffusion and convection. Simultaneous heat and mass transfer. Transport in multicomponent systems. Thermal, forced, and pressure diffusion, Brownian diffusion. Analysis of evaporative and transpiration cooling, catalysis, and combustion. Mass exchangers, including automobile catalytic converters, electrostatic precipitators, filters, scrubbers, humidifiers, and cooling towers. Concurrently scheduled with course C132A. Letter grading.

235A. Nuclear Reactor Theory. (4)
Lecture, four hours; outside study, eight hours. Requisite: course 182A. Underlying physics and mathematics of nuclear reactor (fission) core design. Diffusion theory, reactor kinetics, slowing down and thermalization, multigroup methods, introduction to transport theory. Letter grading.

M237B. Fusion Plasma Physics and Analysis. (4)
(Same as Electrical Engineering M287.) Lecture, four hours; outside study, eight hours. Requisite: Electrical Engineering M185. Fundamentals of plasmas at thermonuclear burning conditions. Fokker/Planck equation and applications to heating by neutral beams, RF, and fusion reaction products. Bremsstrahlung, synchrotron, and atomic radiation processes. Plasma surface interactions. Fluid description of burning plasma. Dynamics, stability, and control. Applications in tokamaks, tandem mirrors, and alternate concepts. Letter grading.

237D. Fusion Engineering and Design. (4)
Lecture, four hours; outside study, eight hours. Fusion reactions and fuel cycles. Principles of inertial and magnetic fusion. Plasma requirements for controlled fusion. Plasma-surface interactions. Fusion reactor concepts and technological components. Analysis and design of high heat flux components, energy conversion and tritium breeding components, radiation shielding, magnets, and heating. Letter grading.

239B. Seminar: Current Topics in Transport Phenomena. (2 to 4)
Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Lectures, discussions, student presentations, and projects in areas of current interest in transport phenomena. May be repeated for credit. S/U grading.

239F. Special Topics in Transport Phenomena. (2 to 4)
Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced and current study of one or more aspects of heat and mass transfer, such as turbulence, stability and transition, buoyancy effects, variational methods, and measurement techniques. May be repeated for credit with topic change. S/U grading.

239G. Special Topics in Nuclear Engineering. (2 to 4)
Lecture, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced study in areas of current interest in nuclear engineering, such as reactor safety, risk-benefit trade-offs, nuclear materials, and reactor design. May be repeated for credit with topic change. S/U grading.

239H. Special Topics in Fusion Physics, Engineering, and Technology. (2 to 4)
Seminar, two to four hours; outside study, four to eight hours. Designed for graduate mechanical and aerospace engineering students. Advanced treatment of subjects selected from research areas in fusion science and engineering, such as instabilities in burning plasmas, alternate fusion confinement concepts, inertial confinement fusion, fission-fusion hybrid systems, and fusion reactor safety. May be repeated for credit with topic change. S/U grading.